• Prediction Error Minimization & the Free Energy Principle

  • Consciousness & Self

  • Attention and Expectation in Perceptual Processing

  • Brain-Body Interaction

  • Psychiatry & neurology (Autism, Schizotypy, Alcohol Addiction, Depression, Eating Disorders, Borderline Personality Disorder, Functional Motor Disorders, Parkinson’s Disease)

Recent Examples:


Sustained conscious access to incidental memories in RSVP.

Matthews, J., Wu, J., Corneille, V., Hohwy, J., van Boxtel, J., & Tsuchiya, N. (2018, September 7).

In visual search of natural scenes, differentiation of briefly fixated but task-irrelevant distractor items from incidental memory is often comparable to explicit memorization. However, many characteristics of incidental memory remain unclear, including the capacity for its conscious retrieval. Here, we examined incidental memory for faces in either upright or inverted orientation using Rapid Serial Visual Presentation (RSVP). Subjects were instructed to detect a target face in a sequence of 8-15 faces cropped from natural scene photographs (Experiment 1). If the target face was identified within a brief time window, the subject proceeded to an incidental memory task. Here, subjects used incidental memory to discriminate between a probe face (a distractor in the RSVP stream) and a novel, foil face. In Experiment 2 we reduced scene-related semantic coherency by intermixing faces from multiple scenes and contrasted incidental memory with explicit memory; a condition where subjects actively memorised each face from the sequence without searching for a target. In both experiments, we measured objective performance (Type 1 AUC) and metacognitive accuracy (Type 2 AUC) revealing sustained and consciously accessible incidental memory for upright and inverted faces. In novel analyses of face categories, we examined whether accuracy or metacognitive judgements are affected by shared semantic features (i.e., similarity in gender, race, age). Similarity enhanced the accuracy of incidental memory discriminations but did not influence metacognition. We conclude that incidental memory is sustained and consciously accessible, is not reliant on scene contexts, and not enhanced by explicit memorization.

Neural markers of predictive coding under perceptual uncertainty revealed with Hierarchical Frequency Tagging.

Gordon, N., Koenig-Robert, R., Tsuchiya, N., van Boxtel, J. J., & Hohwy, J. (2017). Elife, 6, e22749.

There is a growing understanding that both top-down and bottom-up signals underlie perception. But it is not known how these signals integrate with each other and how this depends on the perceived stimuli’s predictability. ‘Predictive coding’ theories describe this integration in terms of how well top-down predictions fit with bottom-up sensory input. Identifying neural markers for such signal integration is therefore essential for the study of perception and predictive coding theories. To achieve this, we combined EEG methods that preferentially tag different levels in the visual hierarchy. Importantly, we examined intermodulation components as a measure of integration between these signals. Our results link the different signals to core aspects of predictive coding, and suggest that top-down predictions indeed integrate with bottom-up signals in a manner that is modulated by the predictability of the sensory input, providing evidence for predictive coding and opening new avenues to studying such interactions in perception.

Figure thumbnail gr1

Are there levels of consciousness?

Bayne, T., Hohwy, J., Owen, A. (2016). Trends in Cognitive Sciences 20(6): 405-413.
The notion of a level of consciousness is a key construct in the science of consciousness. Not only is the term employed to describe the global states of consciousness that are associated with post-comatose disorders, epileptic absence seizures, anaesthesia, and sleep, it plays an increasingly influential role in theoretical and methodological contexts. However, it is far from clear what precisely a level of consciousness is supposed to be. This paper argues that the levels-based framework for conceptualizing global states of consciousness is untenable and develops in its place a multidimensional account of global states.

Figure 1

Deep Brain Stimulation for Parkinson’s disease changes perception in the Rubber Hand Illusion.

Ding, C., Palmer, C., Hohwy, J., Youssef, G., Paton, B., Tsuchiya, N., Stout, J., Thyagarajan, D. (2018).Scientific Reports vol. 8, Article number: 13842 (2018).

Parkinson’s disease (PD) alters cortico-basal ganglia-thalamic circuitry and susceptibility to an illusion of bodily awareness, the Rubber Hand Illusion (RHI). Bodily awareness is thought to result from multisensory integration in a predominantly cortical network; the role of subcortical connections is unknown. We studied the effect of modulating cortico-subcortical circuitry on multisensory integration for bodily awareness in 24 PD patients treated with subthalamic nucleus (STN) deep brain stimulation (DBS), in comparison to 21 healthy volunteers, using the RHI experiment. Typically, synchronous visuo-tactile cues induce a false perception of touch on the rubber hand as if it were the subject’s hand, whereas asynchronous visuo-tactile cues do not. However, we found that in the asynchronous condition, patients in the off-stimulation state did not reject the RHI as strongly as healthy controls; patients’ rejection of the RHI strengthened when STN-DBS was switched on, although it remained weaker than that of controls. Patients in the off-stimulation state also misjudged the position of their hand, indicating it to be closer to the rubber hand than controls. However, STN-DBS did not affect proprioceptive judgements or subsequent arm movements altered by the perceptual effects of the illusion. Our findings support the idea that the STN and subcortical connections have a key role in multisensory integration for bodily awareness. Decision-making in multisensory bodily illusions is discussed.